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It has come to the attention of the authors that errors occured
in equations (11) and (12) of the above paper. In equation
(11), two α factors were missing in the matrix. The corrected
equation is as follows:

[
I − αG′(0, 0; ω)

]−1 = �−1

(
1 − αG′

22 −αG′
12

−αG′
21 1 − αG′

11

)
.

Furthermore, in equation (12) there was a missing α2 factor.
The corrected equation is as follows:

� = [(
1 − αG′

11

) (
1 − αG′

22

) − α2G′
12G

′
21

]
.
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Abstract
In this paper, we determine the spectrum and density of states of a graphene quantum dot in a
normal quantizing magnetic field. To accomplish this, we employ the retarded Green function
for a magnetized, infinite-sheet graphene layer to describe the dynamics of a tightly confined
graphene quantum dot subject to Landau quantization. Considering a δ(2)(r) potential well that
supports just one subband state in the well in the absence of a magnetic field, the effect of
Landau quantization is to ‘splinter’ this single energy level into a proliferation of many
Landau-quantized states within the well. Treating the graphene sheet and dot as a closed system
subject to a fully Hermitian Hamiltonian (including boundary conditions), there is no indication
of decay of the Landau-quantized graphene dot states into the quantized states of the host
graphene sheet for ‘tight’ confinement by the δ(2)(r) potential well, notwithstanding extension
of the dot Green function (and eigenfunctions) outside the δ(2)(r) potential well.

1. Introduction: the graphene quantum dot Green
function

Our principal concern in this paper is with recent theoretical
studies envisioning possible electronic devices based on
transport in quantum dot systems in which each dot by itself
would support just one single energetically accessible energy
level in the absence of a magnetic field. Moreover, the role
of the magnetic field is often represented merely in terms of a
Peierls phase factor. In fact, the magnetic field also induces a
‘splintering’ of the single dot level into a proliferation of many
Landau-quantized dot states which may also be energetically
accessible, making the situation much more complicated. This
also applies to graphene-based quantum dot systems, as shown
in this paper. Moreover, we examine the Green function and
Landau-quantized energy spectrum for a graphene quantum
dot, and our closed-form analytic result is tractable and can
facilitate accurate transport calculations involving graphene
quantum-dot-based devices modified or probed by a magnetic
field.

Graphene, as a 2D sheet of carbon atoms in a hexagonal
honeycomb lattice, has special properties that arise from its

band structure [1, 2], which gives rise to an electron/hole
energy spectrum in the nature of a massless relativistic ‘Dirac’
dispersion law. These properties of graphene include a room
temperature quantum Hall effect [3], Klein tunneling [4]
and many other device-friendly features that mark it as an
exceptionally promising material for the ‘next generation’ of
electronics. The massless relativistic dispersion law occurs
at two inequivalent zero-gap points of the first Brillouin zone
where the electron and hole bands touch (‘Dirac’ nodes, K and
K ′), giving rise to low carrier energies that are proportional to
momentum on the plane, p = (px, py), with the Hamiltonian
given by (h̄ → 1 throughout)

H = γ σ ν · p. (1)

Here, σν = [σx , (sgn(ν))σy] and σx , σy are Pauli spin matrices,
associated with a ‘pseudo-spin’ in the two-dimensional space
of the electron and hole bands; also sgn(ν) = 1 or −1 for
ν = K or K ′, and γ = 3α̃d/2 (with α̃ as the hopping
parameter in the tight binding approximation and d is the
lattice spacing) plays the role of a constant Fermi velocity
independent of density. In this 2D pseudo-spin representation,
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the 2 × 2 Green function matrix, G, obeys the equation(
i
∂

∂ t
− H

)
G(r, r′; t, t ′) = Iδ(2)(r − r′)δ(t − t ′), (2)

with I as the 2 × 2 unit matrix.
The magnetic field, B, taken normal to the graphene plane,

is incorporated through the usual replacement p → p − eA,
where A = 1

2 B × r for a uniform, constant magnetic field,
which is sufficiently strong to induce Landau quantization. It
is well known that the requirement of gauge invariance leads to
a result of the form [5]3

G(r1, r2; t1, t2) = C(r1, r2)G ′(r1, r2; t1 − t2), (3)

where the factor G ′(r1, r2; t1 − t2) is gauge-invariant. For
an infinite homogeneous sheet with planar translational
invariance, it satisfies the equation (R = r1 − r2, T = t1 −
t2, h̄ → 1):(

i
∂

∂T
− γ σν ·

[
1

i

∂

∂R
− e

2
B × R

])
G ′(R, T )

= Iδ(2)(R)δ(T ), (4)

whereas the Peierls factor C(r, r′) embodies all non-spatially
invariant structure due to the magnetic field and all gauge
dependence as

C(r, r′) = exp

[
ie

2h̄c
r · B × r′ − φ(r) + φ(r′)

]
, (5)

φ(r) being an arbitrary gauge function.
The potential for a ‘tightly’ confined quantum dot at the

origin (which induces further spatial inhomogeneity) is taken
as (h̄ → 1)

U(r) = αδ(2)(r), (α < 0) (6)

where α = ∫
d2r U(r) < 0 is essentially the product of

the confining potential well depth, U0, and the area of the
dot. This representation of a quantum dot with just a single
accessible energy level in the absence of a magnetic field in
terms of the δ(2)(r) potential is a perfectly good vehicle to
use in exploring the effects of Landau quantization on a small
graphene quantum dot. It provides insight into qualitative (as
well as quantitative) features that pervade the phenomenology
induced by the magnetic field. Notwithstanding the fact
that this formulation is relatively easy to solve in closed
form, its results are very informative about the fundamental
physics involved and it provides clear predictions relating to
experiment; namely the role of the magnetic field in splintering
the single dot level into a proliferation of levels by Landau
quantization.

The graphene Green function for electron propagation
over the entire sheet, including the dot region, obeys the
integral equation (frequency representation; for either K or K ′)

G ′
dot(r1, r2; ω) = G ′(r1, r2; ω)

+ α

∫
d2r3G ′(r1, r3; ω)δ(2)(r3)G ′

dot(r3, r2; ω), (7)

3 (Use equation (10) with no Fermi averaging and execute the p → R Fourier
transform.)

where G ′ is the Landau-quantized electron Green function of
equation (4) for the full 2D magnetized sheet, with no quantum
well. This equation may be rewritten as (bear in mind that the
Green function is a 2 × 2 matrix in pseudo-spin space, and that
the matrices involved are not commutative, in general)

G ′
dot(r1, r2; ω) = G ′(r1, r2; ω)+αG ′(r1, 0; ω)G ′

dot(0, r2; ω),

(8)
and setting r1 → 0 throughout, we can solve for G ′(0, r2; ω),
which facilitates the full solution of the matrix Green function:

G ′
dot(r1, r2; ω) =

[
G ′

dot(r1, r2; ω)11 G ′
dot(r1, r2; ω)12

G ′
dot(r1, r2; ω)21 G ′

dot(r1, r2; ω)22

]
,

(9)
in the form

G ′
dot(r1, r2; ω) = G ′(r1, r2; ω)

+ αG ′(r1, 0; ω)[I − αG ′(0, 0; ω)]−1G ′(0, r2; ω). (10)

The first term on the right describes propagation of Landau-
quantized graphene carriers on the host sheet with no quantum
well and the second term introduces the effects of the quantum
well ‘dot’. The matrix inversion of [I − αG ′(0, 0; ω)] yields

[I − αG ′(0, 0; ω)]−1 = 
−1

(
1 − αG ′

22 −G ′
12−G ′

21 1 − αG ′
11

)
.

(11)
where all G ′-arguments are (0, 0) with ω suppressed and


 = [(
1 − αG ′

11

) (
1 − αG ′

22

) − G ′
12G ′

21

]
. (12)

In regard to the issue of confinement, it should be noted that
equations (10) and (3) clearly indicate that the dot Green
function has spatial extension outside the dot (notwithstanding
the δ(2)(r) potential well). This means that tunneling is
quite possible under appropriate external conditions, including
a potential difference that can drive the system out of
equilibrium. (This applies both for null and finite magnetic
fields.)

The vanishing of all the positional arguments of the
elements of G ′(0, 0; ω) leads to divergences. However, such
divergences are an artifact of the δ(2)(R) confinement of the
potential well to a single point at the origin. Realistically, the
well has a small but finite radius, a, and the original integral
equation should be reformulated and solved more carefully
with U(R) occupying a small, finite region. Considering this,
it is reasonable to view the formal solution as being ‘smeared’
over the radius a and make the replacement

G(0, 0; ω) ⇒ G(a; ω), (13)

which relieves the divergence problem. On this level of
approximation, we have shown that G ′

12∼G ′
21∼(γ eBa/ω)

G ′
11 = (γ eBa/ω)G ′

22, so that G ′
12 and G ′

21 can be neglected
in comparison with G ′

11 = G ′
22 due to the smallness of a.

2. The magnetic field Green function of a graphene
quantum dot

It is apparent from equations (10) and (11) that the
determination of the magnetic field Green function for the

2
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graphene quantum dot requires knowledge of its full sheet
counterpart. We have found that the latter solution of
equation (4) in frequency representation is given in terms of a
closed-form integral representation involving only elementary
functions (which generate Landau eigenfunctions) as4

G ′
11(R; �) = −M�c

4π

∫ ∞

0
dτ

ei�τ

sin(�cτ/2)

× exp

{
iM�c[X2 + Y 2]

4 tan(�cτ/2)

}
. (14)

Equivalently, we find that

G ′
11(R; �) = M

π
Z2(iM�c/2,

√
2M�, R), (15)

where Z2 is the second solution of the Bessel wave
equation [6].

For the case ν = K, we have the identifications

� = ω + γ γν

ω
eB = ω + γ 2

ω
eB; M = ω

2γ 2
;

�c = 2γ 2

ω
eB,

(16)

whence (for ν = K )

G ′
11(R; ω)K = G ′

22(R; ω)K = −eB

4π

×
∫ ∞

0
dτ

exp[i(ω + γ 2eB/ω)τ ]
sin(γ 2eBτ/ω)

× exp

{
ieB[X2 + Y 2]

4 tan(γ 2eBτ/ω)

}
. (17)

Defining T̃ ≡ τ/ω, the τ integral is∫ ∞

0
dτ · · · = ω

∫ ∞

0
dT̃ exp[iT̃ (ω2 + γ 2eB)]

× 1

sin(γ 2eBT̃ )
exp

{
ieB[X2 + Y 2]
4 tan(γ 2eBT̃ )

}
, (18)

and expanding the integrand as a generator of Laguerre
polynomials, Ln , we obtain [7]∫ ∞

0
dτ · · · = 2iω exp

(
−eB

4
[X2 + Y 2]

)

×
∫ ∞

0
dT̃ exp[iT̃ (ω2 + γ 2eB)]

×
∞∑

n=0

Ln

(
eB

2
[X2 + Y 2]

)
e−i(n+ 1

2 )2γ 2eBT̃ , (19)

with the result

G ′
11(R; ω)K = eB

2π
ω exp

(
−eB

4

[
X2 + Y 2

])

×
∞∑

n=0

Ln
(

eB
2 [X2 + Y 2])

ω2 − 2nγ 2eB
. (20)

4 This will be discussed in greater detail elsewhere.

For the case ν = K ′, we have identifications in
equation (14) as

� = ω + γ γν

ω
eB = ω − γ 2

ω
eB;

M = ω

2γ 2
; �c = 2γ 2

ω
eB

(21)

with the result

G ′
11(R, ω)K ′ = G ′

22(R, ω)K ′ = eB

2π
ω

× exp

(
−eB

4
[X2 + Y 2]

) ∞∑
n=0

Ln(
eB
2 [X2 + Y 2])

ω2 − 2(n + 1)γ 2eB
. (22)

The off-diagonal terms, G ′
12 and G ′

21, are not of immediate
interest, and will not be presented here.

Consequently, the dispersion relation for the Landau-
quantized ‘tightly’ bound graphene dot energy levels, 
 = 0
(equation (12)), takes the form for ν = K with ω → ωK :


 ∼= [1 − αG ′
11(a; ωK )]2 = 0, (23)

or

1 = α
eB

2π
ωK e− eBa2

4

∞∑
n=0

Ln
(

eBa2

2

)
ω2

K − 2nγ 2eB
. (24)

This series converges slowly since [7] Ln(x)→ e
x
2√
π

cos(2
√

nx− π
4 )

(nx)
1
4

as n → ∞, with the denominator on the right of equation (24)
contributing a factor 1

n . It is instructive to install typical

graphene parameters in equation (24), with eBa2

2
∼= 3.8×10−3;

exp(− eBa2

4 ) ∼= 1; γ 2eB ∼= 3.5 × 10−4 meV αeB
2π

∼= 3.4 ×
10−7 meV, yielding

107

3.4ωK
=

∞∑
n=0

Ln(3.8 × 10−3)

ω2
K − 7 × 10−4n

.

The left-hand side is large and rises steadily as a function
of ω−1

K , while the numerators of the terms on the right are
relatively small and diminish as n increases. Correspondingly,
as n increases, the roots involve ω2

K in the denominators on
the right side having to closely approach the frequency poles at
±(7 × 10−4n)1/2 in order to establish equality with the large
left-hand side; in which case the pole for that particular n
value alone determines the position of the energy level root.
In this situation, as n increases, the graphene dot energy levels
are close to the frequency poles of the individual terms of the
series. Accordingly, we write, approximately:

ω2
K − ωK

αeB

4π
e−eBa2/4 Ln

(
eBa2

2

)
− 2nγ 2eB = 0, (25)

with the solutions

ωK = αeB

4π
e−eBa2/4 Ln

(
eBa2

2

)

± 1

2

√(
αeB

2π

)2

e−eBa2/2

(
Ln

(
eBa2

2

))2

+ 8nγ 2eB.

(26)

3
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A similar treatment for ν = K ′ yields the dispersion
relation

1 = α
eB

2π
ωK ′ e

−eBa2

4

∞∑
n=0

Ln(
eBa2

2 )

ω2
K ′ − 2(n + 1)γ 2eB

, (27)

with approximate solutions:

ωK ′ = αeB

4π
e

−eBa2

4 Ln

(
eBa2

2

)

± 1

2

√(
αeB

2π

)2

e
−eBa2

4

(
Ln

(
eBa2

2

))2

+ 8(n + 1)γ 2eB.

(28)

3. Conclusions: graphene dot density of states in a
quantizing magnetic field

Of course, the splintering of the electron and hole spectra
into discrete states by Landau quantization is embodied in the
discrete integer values of n. This is reflected in the many roots
of the ν = K , K ′ dispersion relations for graphene dots in
equations (24)–(28), as well as for an infinite graphene sheet.
To explore this more carefully we have determined the density
of dot states, D(ω), from the retarded Green function of the
magnetized graphene quantum dots:

D(ω) = − 1

π
Tr Im G(ω). (29)

The calculated results, exhibited in figure 1, are in
reasonably good agreement with the analytic approximations
of equations (26) and (28) for n > 1, as discussed above (but
certainly not so for n = 0). The lines are very sharp, except
for a small artificial width introduced to facilitate computation.
Actually, the lines have zero width, corresponding to the fact
that the graphene dot and sheet together are treated as a closed
system subject to a fully Hermitian Hamiltonian (including
boundary conditions), and are fully quantized by the magnetic
field, with discrete spectra that have no matching states.
Therefore, electrons in the dot can not decay into the sheet,
although that would change if the thickness of the sheet should
be sufficient to induce a continuum of states along the magnetic
field direction having a constituent energy value matching the
energy of an electron in one of the Landau-quantized dot
states. Moreover, other recent considerations addressing the
system under consideration as open (rather than closed) have
yielded information about tunneling-induced linewidth of the
dot states [8, 9]. The formulation presented here can, in
due course, be applied to graphene magnetotunneling studies
without introducing the usual transfer-matrix assumption, or
further assumptions about non-Hermitian boundary conditions.
Insofar as boundary conditions are concerned, our δ(2)(r)
well potential builds them in implicitly for a small dot
within the framework of the massless Dirac spectrum. We
expect that the results for differing boundary shapes will
exhibit qualitatively similar features of Landau quantization,
and be quantitatively close to our analytic results as
those wells shrink in size. Despite the simplicity of

Figure 1. Density of states for the K , K ′ nodes of a graphene
quantum dot subject to Landau quantization as a function of
frequency/energy.

the δ(2)(r) well model employed here, the Green function
analyzed in this paper can facilitate rigorously detailed
magnetotunneling/transport studies through small graphene
quantum dot systems (including ‘relativistic’ phenomenology)
when appropriate couplings are introduced.

It should be noted that the graphene dot K and K ′ spectra
(DOS) are generally closely aligned (but slightly displaced
from each other), except for the almost-central mode of the
K node, which has no K ′ counterpart. In figures 2 and 3 we
also exhibit the K , K ′ eigenenergies as functions of the square
root of the magnetic field.

To put this work into proper perspective, we note that the
energy spectrum of a graphene quantum dot in a perpendicular
magnetic field has already been studied experimentally [10, 11]
and theoretically [12–15]. The theoretical analysis that we
have presented here differs from that of [12–15] as follows:
in regard to [12], we feel that the magnetic field should not
be limited to the region of the dot, vanishing elsewhere; in
regard to [13], we consider the gapless case; in regard to [14],
we avoid the employment of an ‘infinite mass’ boundary
condition; while, in regard to [15], we do not assume a
parabolic model for quantum dots, nor do we treat a bilayer.

In summary, we have analyzed the retarded Green function
for a graphene quantum dot in terms of the infinite-sheet

4
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Figure 2. Energy/frequency levels of a graphene quantum dot
subject to Landau quantization for the K node as a function of the
square root of the magnetic field.

Figure 3. Same as figure 2, for the K ′ node (instead of the K node).

graphene Green function in a quantizing magnetic field, and
have employed it in obtaining the spectrum and density of
states of a graphene quantum dot subject to a high magnetic
field. In this regard, we have found that the single-dot energy
level supported by the δ(2)(r) potential in the absence of a
magnetic field is splintered into a proliferation of many discrete
Landau-quantized dot states within the well by a magnetic
field normal to the graphene sheet. Consequently, the validity
of recent theoretical studies envisioning possible electronic
devices based on transport in quantum dot systems (possibly

including graphene) in which each dot would support just one
single energetically accessible energy level in the absence of a
magnetic field, and representing the role of the magnetic field
merely in terms of a Peierls phase factor, needs to be carefully
reconsidered.
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